THE CANADIAN CHEMISTRY CONTEST 2022 for high school and CEGEP students

PART C: CANADIAN CHEMISTRY OLYMPIAD Final Selection Examination 2022

(120 minutes)

This segment has five (5) questions. While students are expected to attempt all questions for a complete examination in 2 hours, it is recognized that backgrounds will vary and students will not be eliminated from further competition because they have missed parts of the paper.

Your answers are to be written in the spaces provided on this paper. All of the paper, is to be returned immediately by upload.

- PLEASE READ -

1. BE SURE TO COMPLETE THE INFORMATION REQUESTED AT THE BOTTOM OF THIS PAGE BEFORE BEGINNING PART C OF THE EXAMINATION.
2. STUDENTS ARE EXPECTED TO ATTEMPT ALL QUESTIONS OF PART A AND PART C. CREDITABLE WORK ON A LIMITED NUMBER OF THE QUESTIONS MAY BE SUFFICIENT TO EARN AN INVITATION TO THE NEXT LEVEL OF THE SELECTION PROCESS.
3. IN QUESTIONS WHICH REQUIRE NUMERICAL CALCULATIONS, BE SURE TO SHOW YOUR REASONING AND YOUR WORK.
4. ONLY NON-PROGRAMMABLE CALCULATORS MAY BE USED ON THIS EXAMINATION.
5. PART A DATASHEET IS THE ONLY DATASHEET THAT MAY BE USED ON THIS EXAMINATION.

PART A $\underset{\text { Correct Answers }}{(}$
$25 \times 1.6=$ \qquad /040

PART C

1. \qquad
2. /012
3. \qquad
4. \qquad
5. /012

TOTAL /100

Name
(LAST NAME, Given Name; Print Clearly)

School \qquad

Date of Birth \qquad
City \& Province \qquad
E-Mail \qquad Home Telephone () - \qquad
Years at a Canadian high school \qquad No. of chemistry courses at a Québec CÉGEP \qquad
Male $\quad \square \quad$ Canadian Citizen $\square \quad$ Landed Immigrant $\square \quad$ Visa Student
Female \square Passport valid until February $2023 \square \quad$ Nationality of Passport \qquad
Teacher \qquad Teacher E-Mail \qquad

1. ORGANIC CHEMISTRY

a) Starting with pyridine and any non-cyclic organic reagents with 6 or less carbon atoms, devise a synthesis of nicotine without stereochemistry. You may use any inorganic reagents you wish. Clearly draw the entire scheme containing reagents and intermediates. 6 marks

b) Starting with hexan-1,5-diol and any organic and inorganic reagents you wish, devise a synthesis of menthol without stereochemistry. Clearly draw the entire scheme containing reagents and intermediates. 4 marks

Hint: here's a reaction that may be useful; a gilman reagent is a lithium dialkyl cuprate salt that can perform conjugate addition reactions like so:

Where R, R_{1} and R_{2} are different alkyl groups.
c) The following structures are all stereoisomers of menthol. Assuming that all these structures are in their most stable conformations, circle the most stable stereoisomer. 2 marks

2. ANALYTICAL CHEMISTRY

Colorless crystal \mathbf{A} undergoes a thermal decomposition reaction to produce two gases \mathbf{B} and C. When gas \mathbf{B} is further heated to a higher temperature and then cooled down to the original temperature, the volume the gases increase by 50%. Although \mathbf{A} is commonly used in agriculture as a fertilizer, it nevertheless is an oxidizing agent. A dissolve easily in water and causes the temperature of the solution to decrease noticeably and the resulting solution is slightly acidic (pH between 4.5 and 5.0). Heating equal moles of \mathbf{A} and solid NaOH produces a gas \mathbf{D} with unpleasant odor and a white solid \mathbf{E}. When gas \mathbf{D} is introduced into a AgNO_{3} solution, a dark brown solid \mathbf{F} is formed. However, when gas \mathbf{D} is continuously introduced, a colorless solution is obtained. Heating solid E produces colorless gas \mathbf{G} which is essential for combustion reactions and a white solid \mathbf{H}. When \mathbf{H} is treated with concentrated nitric acid, a brown color gas is evolved.
a) Based on information given, please identify $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathrm{D}, \mathbf{E}, \mathbf{F}, \mathbf{G}$ and \mathbf{H}.

4 marks
A:
B:
C:
F:
G:
H:
b) Write the chemical reaction equations for the following 4 marks

Reaction to produce $\mathbf{B} \& \mathbf{C}$

Reaction for heating B to increase the volume by 50%

Reaction to produce D \& E

Reaction to produce F

Reaction of \mathbf{F} to produce the colorless solution

Reaction of \mathbf{E} to produce \mathbf{G} and \mathbf{H}

Reaction of \mathbf{H} to produce the brown color gas

Leucine $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}$ is on the top list of essential amino acids for human body. Leucine contains a carboxylic acid functional group and an amine functional group and has a $\mathrm{pK}_{\mathrm{a}}=2.36$ and $\mathrm{pK}_{\mathrm{b}}=4.40$. Leucine has been used in the food industry and as healthy supplement.
c) Using your knowledge of Charge Balance and/or Mass Balance, calculate the pH of a 0.100 M aqueous Leucine solution. Show your detailed work to earn full marks.

2.5 marks

In a lab, there are $0.100 \mathrm{M} \mathrm{NaOH}, 0,120 \mathrm{M} \mathrm{HCl}$, oxalic acid primary standard $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right.$, $126.07 \mathrm{~g} / \mathrm{mol}$), Potassium Hydrogenphthalate primary standard ($\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}, 204.22 \mathrm{~g} / \mathrm{mol}$), Tris(hydroxymethyl)-aminomethane primary standard (Tris. $\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{2}, \mathrm{~kb}=1.15 \times 10^{-6}$, $121.14 \mathrm{~g} / \mathrm{mol})$, Sodium Carbonate primary standard $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}, 155.99 \mathrm{~g} / \mathrm{mol}\right)$, and three indictors, Phenolphthalein ($\mathrm{pK}_{\mathrm{a}}=9.4$), methyl orange ($\mathrm{pK}_{\mathrm{a}}=3.4$) and methyl red ($\mathrm{pK}_{\mathrm{a}}=4.95$).
d) The purity of Leucine, which is going to be used in making dietary supplement, is to be determined by titration. A 2.000 g of Leucine is taken to make a 250.00 mL aqueous solution. Which of the afore listed chemicals would you use as the titrant? Which would you use as the indicator?
0.5 mark
e) Which of the primary standards would you use to standardize your titrant?

0.5 mark

f) If 14.94 mL of the titrant is required to reach the equivalence point for a 25.00 mL aliquot of the analyte, what is the purity of the Leucine sample?

0.5 mark

3. INORGANIC CHEMISTRY

The Monsanto process is a famous industrial catalytic cycle. The process is presented below:
D

Please answer the following questions pertaining to the Monsanto process:
a) Write the overall balanced equation for the Monsanto process.

1 mark
b) For complex A, state which of its ligands are weak field and which are strong field, and also state whether the complex is a cis or trans isomer.
1 mark
c) For complex B, draw its crystal field splitting diagram, making sure to fill in the electrons and label each d orbital. Hint: complex B is diamagnetic.
2 marks
d) For complex C , state its geometry and coordination number.

1 mark
e) For complex D, state the metal's oxidation state and d-electron count.

1 mark

Rhodium, the metal used in the Monsanto process, crystallizes into the face centered cubic structure as shown below:

The lattice parameter (unit cell length) of the crystal is 0.380 nm .
f) State the number of atoms present in the unit cell.
0.5 mark
g) State the coordination number of Rh in the crystal.
0.5 mark
h) Calculate the density of Rh in $\mathrm{g} \mathrm{cm}^{-3}$.

2 marks
i) Calculate the volume of empty space in the unit cell of Rh in nm^{3}.

Hint: the volume of a sphere with radius r is given by: $V=\frac{4}{3} \pi r^{3}$
3 marks

4. ORGANIC CHEMISTRY and NMR spectroscopy

a) The total synthesis of Gymnomitrol combines a wide variety of synthesis techniques. In step 1, only one side is reacted. Over the reaction sequence, a Michael addition and enolate attack are performed consecutively. Later in the sequence, an aldol addition is used to further cyclize the molecule. Given starting compound A and the following reaction sequence, identify compounds B, C, D, F, G, I, J and K. Structures $\mathbf{L}_{\mathbf{1}}$ and $\mathbf{L}_{\mathbf{2}}$ are both possible products from precursor \mathbf{K}. Draw them both and note which one reacts to form Gymnomitrol.
9 marks

1) $\mathrm{CuBr}, \mathrm{BrMg}$

 1

b) Step 2 in the synthesis of Gymnomitrol is known as a Wolff-Kishner Reduction. Draw the complete reaction mechanism.
1 mark
c) The selected hydrogen atoms all appear in the condensed H-NMR spectrum. Fill in the table with the hydrogen atoms' corresponding H-NMR peaks.
2 marks

Chemical shift options for peaks:
5.00, 3.72, 1.65 and 2.53 ppm

Hydrogen atom	Chemical shift of peak (ppm)
a.	
b.	
c.	
d.	

Page 12 of 16

5. PHYSICAL CHEMISTRY

The following $2^{\text {nd }}$-order reaction: $A(g) \rightarrow 2 B(g)$ was carried out at $\mathrm{T}=27^{\circ} \mathrm{C}$ in a reaction vessel of constant volume. At the beginning of the reaction, only $A(g)$ at $P=1 \mathrm{~atm}$ was present. After 100 minutes of reaction, the total pressure P in the vessel reaches 1.5 atm . Assume that both $\mathrm{A}(\mathrm{g})$ and $\mathrm{B}(\mathrm{g})$ are ideal gases.
a) Determine the half-life $\mathrm{t}_{1 / 2}$ and the rate constant k of the reaction at $27^{\circ} \mathrm{C}$. State your units in atmosphere and minutes.
3 marks
b) Give the rate constant k using moles, litres and seconds for the units.

1 mark

Consider a closed container of fixed size in contact with its surroundings maintained at a temperature of 298 K . The inside of this container is partitioned by a frictionless, movable wall into two compartments labeled 1 and 2 , with initial volumes of $V_{1}=5 L$ and $V_{2}=1 L$, respectively. In compartment 1, there is a gaseous equilibrium mixture of molecules A and B with a total pressure of 1 atm . In compartment 2 , there is a gas of only compound C also with a pressure of 1 atm . A piece of metal catalyst of negligible volume is then introduced into compartment 2 which causes gas C to decompose into gaseous product D in an equilibrium reaction. This pushes the wall against compartment 1 , which increases V_{2} and decreases V_{1}, also shifting the $A \rightleftharpoons B$ equilibrium as according to Le Chatelier's principle. The wall is pushed until the reactions in both compartments reach a new state of equilibrium. The standard changes in Gibbs free energies for the two equilibria are:

$$
\begin{array}{ll}
A(g) \rightleftharpoons 2 B(g) & \Delta G_{1}^{o}=-5.183 \mathrm{~kJ} / \mathrm{mol} \\
C(g) \rightleftharpoons 3 D(g) & \Delta G_{2}^{o}=-5.636 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

Assume all gases are ideal.
c) Calculate the initial number of moles for C .

1 mark
d) Calculate the equilibrium constant for reaction 1 and 2.

1 mark
e) Calculate the initial number of moles for A and B . 2 marks

We know that V_{2} will increase and V_{1} will decrease. To get a better idea of how the system may evolve we can define $V_{\max }$, the maximum volume of compartment 2 and $V_{\min }$ the minimum volume of compartment 1. To answer f) and g) assume that both compartments are independent from one another and the sum of their volumes is not restricted.
f) Calculate the value of $V_{\text {max }}$, the maximum volume of compartment 2 at 1 atm . 1 mark
g) Calculate the value of $V_{\min }$, the minimum volume of compartment 1 at 1 atm .

1 mark
h) Once a new state of equilibrium is reached the pressure of the system has changed and the volume of compartment 1 reach 4 L . Determine the value of the new equilibrium pressure in the container.
2 marks

