# THE CANADIAN CHEMISTRY CONTEST 2019 <br> for high school and CEGEP students <br> (formerly the National High School Chemistry Examination) <br> <br> PART C: CANADIAN CHEMISTRY OLYMPIAD <br> <br> PART C: CANADIAN CHEMISTRY OLYMPIAD <br> <br> Final Selection Examination 2019 

 <br> <br> Final Selection Examination 2019}

## Free Response Development Problems (90 minutes)

This segment has five (5) questions. While students are expected to attempt all questions for a complete examination in 1.5 hours, it is recognized that backgrounds will vary and students will not be eliminated from further competition because they have missed parts of the paper.

Your answers are to be written in the spaces provided on this paper. All of the paper, including this cover page, along with a photocopy of Part A of the examination, is to be returned IMMEDIATELY by courier to your Canadian Chemistry Olympiad Coordinator.

|  | - PLEASE READ - |
| :---: | :---: |
| 1. | BE SURE TO COMPLETE THE INFORMATION REQUESTED AT THE BOTTOM OF THIS PAGE BEFORE BEGINNING PART C OF THE EXAMINATION. |
| 2. | STUDENTS ARE EXPECTED TO ATTEMPT ALL QUESTIONS OF <br> PART A AND PART C. CREDITABLE WORK ON A LIMITED NUMBER OF THE QUESTIONS MAY BE SUFFICIENT TO EARN AN INVITATION TO THE NEXT LEVEL OF THE SELECTION PROCESS. |
| 3. | IN QUESTIONS WHICH REQUIRE NUMERICAL CALCULATIONS, BE SURE TO SHOW YOUR REASONING AND YOUR WORK. |
| 4. | ONLY NON-PROGRAMMABLE CALCULATORS MAY BE USED ON THIS EXAMINATION. |
| 5. | NOTE THAT A PERIODIC TABLE AND A LIST OF SOME PHYSICAL CONSTANTS WHICH MAY BE USEFUL CAN BE FOUND ON A DATA SHEET PROVIDED AT THE END OF THIS EXAMINATION. |

PART A $\underset{\text { Correct Answers }}{( }$
$25 \times 1.6=$ $\qquad$ /040

PART C PART A AND PART C. CREDITABLE WORK ON A LIMITED NUMBER OF THE QUESTIONS MAY BE SUFFICIENT TO EARN AN $\qquad$
$\qquad$
3. ..................../012
4. ..................../012
5. ..................../012

TOTAL
/100
Name
School
$\overline{\text { (LAST NAME, Given Name; Print Clearly) }}$
Date of Birth $\qquad$
City \& Province $\qquad$
E-Mail $\qquad$ Home Telephone ( ) - $\qquad$
Years at a Canadian high school $\qquad$ No. of chemistry courses at a Québec CÉGEP

Male $\quad \square \quad$ Canadian Citizen $\square \quad$ Landed Immigrant $\square \quad$ Visa Student
Female $\square$ Passport valid until February $2020 \square \quad$ Nationality of Passport $\qquad$
Teacher
Teacher E-Mail $\qquad$

## POLYMER CHEMISTRY

1. Polyethylene glycol (PEG) is a polymer formed via condensation polymerization which is a form of step-growth polymerization. PEG is a hydrophilic molecule with applications such as acting as a ligand for water insoluble nanoparticles to solubilize them into aqueous solutions.
a) PEG is formed via a condensation polymerization using ethylene glycol (ethane-1,2diol) as a monomer. Draw the structure of ethylene glycol. 1 mark
b) Draw the structure of a dimer (two monomers attached) of PEG. 1 mark
c) Draw PEG represented in polymeric form with $n$ units. 1 mark

The polydispersity index (PDI) is used to measure the distribution of sizes of polymers in a given sample. It is calculated by the following formula:

$$
P D I=\frac{M_{w}}{M_{n}}
$$

Where $M_{w}$ is the weight average molecular weight and $M_{n}$ is the number average molecular weight. $M_{w}$ is calculated by taking the sums of the squares of the weights of each polymer unit and dividing by the sum of all the weights, whereas $M_{n}$ is calculated by taking the sums of all the weights and dividing by the number of polymers.

$$
M_{w}=\frac{\sum N_{i} M_{i}^{2}}{\sum N_{i} M_{i}} \quad M_{n}=\frac{\sum N_{i} M_{i}}{\sum N_{i}}
$$

Below is a table of the weights of different polymeric units of PEG in a given sample.

| Counts $(N)$ | Weights $(M), \mathrm{g} \mathrm{mol}^{-1}$ |
| :---: | :---: |
| 2 | 502 |
| 4 | 546 |
| 6 | 590 |
| 3 | 634 |
| 1 | 1164 |

d) Calculate the PDI of the PEG sample. 2 marks
e) Calculate how many monomers were used to form the $1164 \mathrm{~g} \mathrm{~mol}^{-1}$ unit. 2 marks

A parameter used to show the extent of monomer polymerization is $p$. For example, $p=$ 0.5 would signify $50 \%$ monomer polymerization. In the case of step-growth polymerization, such as for PEG, $p$ can be represented in the following ways with respect to $M_{w}$ and $M_{n}$.

$$
p=\frac{M_{w}-M_{o}}{M_{w}+M_{o}} \quad p=\frac{M_{n}-M_{o}}{M_{n}}
$$

f) Find an expression for $P D I$ in terms of only $p .2$ marks
g) Calculate $p$ for the sample of PEG based on your calculated PDI. 1 mark
h) What are the maximum and minimum values of PDI? 2 marks
$P D I_{\text {max }}=$
$P D I_{\text {min }}=$

## ANALYTICAL CHEMISTRY

2. Ethylenediaminetetraacetic acid (EDTA) is a chemical of great industrial and medical importance, due to its potency as a chelating agent for metals. EDTA binds to metals in a $1: 1$ ratio. The structure of EDTA and the $\mathrm{pK}_{\mathrm{a}}$ values of its 4 carboxyl protons are given below.


$$
\mathrm{pK}_{\mathrm{a} 1}=2.0, \mathrm{pK}_{\mathrm{a} 2}=2.7, \mathrm{pK}_{\mathrm{a} 3}=6.1, \mathrm{pKa}_{4}=10.3
$$

a) Which form of EDTA would you expect to predominate at neutral pH? Draw the structure below. 2 marks

A 1.032 g sample of iron ore containing both hematite ( $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{M}=159.688 \mathrm{~g} / \mathrm{mol}$ ) and magnetite ( $\mathrm{Fe}_{3} \mathrm{O}_{4}, \mathrm{M}=231.553 \mathrm{~g} / \mathrm{mol}$ ) is contaminated by metal $\mathbf{A}$ and metal carbonate $\mathrm{BCO}_{3}$. The following procedure is carried out to determine the identity and quantity of contaminants in the ore:
i. The sample is dissolved in excess concentrated HCl and chilled in an ice bath, yielding a white precipitate of mass 0.099 g with identity $\mathbf{A C l}_{2}$. The filtrate is boiled to remove dissolved carbon dioxide and transferred to a 100.0 mL volumetric flask. Distilled $\mathrm{H}_{2} \mathrm{O}$ is added to the mark. At this point, both $\mathrm{Fe}^{2+}$ and $\mathrm{Fe}^{3+}$ are present in solution.
ii. A 25.0 mL aliquot of stock solution is titrated with $0.0970 \mathrm{M}_{\mathrm{KMnO}}^{4}$ under acidic conditions, requiring 1.32 mL to reach endpoint.
iii. Excess copper metal is added to a second 25.0 mL aliquot of stock solution to reduce any $\mathrm{Fe}^{3+}$ present in solution to $\mathrm{Fe}^{2+}$. Any remaining copper is filtered out, and the titration is repeated, this time requiring 5.19 mL of 0.0970 M KMnO 4 .
iv. A third 25.0 mL aliquot of stock solution is adjusted to pH 11 , forming a white precipitate of iron (II, III) hydroxide. The filtrate is collected and titrated with 0.182 M EDTA to a murexide endpoint of 2.38 mL .
b) Write and balance the redox equation for the reaction of $\mathrm{KMnO}_{4}$ with $\mathrm{Fe}^{2+}$ in acidic solution to form $\mathrm{Mn}^{2+}$ and $\mathrm{Fe}^{3+}$. 1 mark
c) From step (ii), calculate the mass of magnetite in the ore sample. (Hint: $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is equivalent to $\left.\mathrm{Fe}^{2+} \mathrm{Fe}^{3+}{ }_{2} \mathrm{O}_{4}\right) 2$ marks
d) From steps (ii) and (iii), calculate the mass of hematite in the ore sample. 2 marks
e) From step (i), suggest a plausible identity for contaminant $\mathbf{A}$, and determine the mass of $\mathbf{A}$ in the ore sample. 2 marks
f) From step (iv) and your answers to the questions above, determine the identity of contaminant B. If you did not get an answer for any one or more of (c), (d), or (e), use 0.147 g for the mass of $\mathrm{BCO}_{3}$ in the ore (Note: may not give the same answer for the identity of B). 2 marks
g) When $\mathrm{CO}_{2}$ is bubbled through the filtrate from step (iv) (pre-EDTA titration), a white precipitate forms. Write the balanced chemical equation for the formation of this precipitate. 1 mark

## INORGANIC CHEMISTRY

3. Rhodium complexes are commonly used as organometallic catalysts. In the Monsanto process, cis-[Rh(CO)22] is used to catalyze the carbonylation of a methyl halide.
a) Assuming the same electronic state of Rh as above, find a formula for the charge of the complex, n , in terms of $\mathrm{a}, \mathrm{b}$ and c for the complex $\left[R h_{a}(\mathrm{CO}) \mathrm{blc}\right]^{\mathrm{n}} .2$ marks
b) $\left[\mathrm{Rh}(\mathrm{CO})_{2} 2_{2}\right]^{-}$has two isomers: cis and trans. Draw the two isomers (you do not need to note which is cis and which is trans). 2 marks
c) How many valence $d$ electrons does Rh have in cis- $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{I}_{2}\right]^{-}$? Hint: The 5 s orbital only contains 1 electron in Rhodium's ground state electronic configuration. 2 marks
d) Draw and fill in a crystal field splitting diagram for cis-[Rh(CO) $\left.)_{2} l_{2}\right]^{-}$. Assume that CO and $I^{-}$have similar electronic properties. 3 marks
e) Circle the correct answer. $\mathrm{Cis}-\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{I}_{2}\right]^{-}$is: 1 mark

Diamagnetic
Paramagnetic
Ferromagnetic
f) Starting from 0 to 10 inclusively, write down EACH number of valence $d$ electrons that would make cis- $\left[\mathrm{Rh}(\mathrm{CO})_{2} 1_{2}\right]^{n}$ diamagnetic assuming the same crystal field splitting properties. 2 marks

## ORGANIC CHEMISTRY

4. a) Draw or write reagents $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$, and $\mathbf{E}$ for the reaction scheme below. Include any necessary conditions. Any aqueous work up is assumed and does not need to be added. 5 marks




C



C

b) Draw the structures of $\mathbf{F}, \mathbf{G}, \mathbf{H}, \mathbf{I}, \mathbf{J}$, and $\mathbf{K}$ for the reaction scheme below. 6 marks



c) Draw the structure of a potential product, $\mathbf{L}$, based on the reaction scheme below. Your answer CAN NOT be the same as the structure you drew for $\mathbf{K}$. There is no box for the answer, please use the space below. 1 mark

$$
J \xrightarrow[P C C]{ } L
$$

## PHYSICAL CHEMISTRY

5. Criegee Intermediates, $\mathrm{CH}_{2} \mathrm{OO}$, have attracted significant interest in recent years due to their critical role in many atmospheric processes. The atmospheric fate of a Criegee Intermediate is largely determined by its reactions with water, due to the high concentration of water in the atmosphere. The following two step reaction and plot show the reaction of the simplest Criegee Intermediate with the water monomer,

$$
\begin{equation*}
\mathrm{CH}_{2} \mathrm{OO}+\mathrm{H}_{2} \mathrm{O} \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftharpoons}} \mathrm{CH}_{2} \mathrm{OO} \cdots \mathrm{H}_{2} \mathrm{O} \xrightarrow{k_{2}} \mathrm{CH}_{2}(\mathrm{OH}) \mathrm{OOH} \tag{1}
\end{equation*}
$$

where $k_{1}$ and $k_{-1}$ are the forward and reverse rate constants for the formation of a weakly bound complex, $\mathrm{CH}_{2} \mathrm{OO} \cdots \mathrm{H}_{2} \mathrm{O}$, that then proceeds to the product, $\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{OOH}$, with the rate constant $k_{2}$.

a) Calculate the activation energy of the second step of (1). 1 mark
b) Calculate the overall reaction energy. 1 mark

The rate at which the product is formed is notated $\frac{d\left[\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{OOH}\right]}{d t} \cdot$ Similarly, the
concentration of the weakly bound complex changes at a rate of $\frac{d\left[\mathrm{CH}_{2} \mathrm{OO} \cdots \mathrm{H}_{2} \mathrm{O}\right]}{d t}$. The expressions for these two rates in terms of their rate constants are:

$$
\begin{gather*}
\frac{d\left[\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{OOH}\right]}{d t}=k_{2}\left[\mathrm{CH}_{2} \mathrm{OO} \cdots \mathrm{H}_{2} \mathrm{O}\right]  \tag{2}\\
\frac{d\left[\mathrm{CH}_{2} \mathrm{OO} \cdots \mathrm{H}_{2} \mathrm{O}\right]}{d t}=k_{1}\left[\mathrm{CH}_{2} \mathrm{OO}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]-k_{-1}\left[\mathrm{CH}_{2} \mathrm{OO} \cdots \mathrm{H}_{2} \mathrm{O}\right]-k_{2}\left[\mathrm{CH}_{2} \mathrm{OO} \cdots \mathrm{H}_{2} \mathrm{O}\right] \tag{3}
\end{gather*}
$$

The steady state approximation assumes that the weakly bound complex reacts as quickly as it is produced (the concentration is constant). This gives a second expression for the rate of change of the weakly bound complex:

$$
\begin{equation*}
\frac{d\left[\mathrm{CH}_{2} \mathrm{OO} \cdots \mathrm{H}_{2} \mathrm{O}\right]}{d t}=0 \tag{4}
\end{equation*}
$$

c) Using these expressions, solve for the rate at which the product is formed in terms of only the initial reactants $\left[\mathrm{CH}_{2} \mathrm{OO}\right]$ and $\left[\mathrm{H}_{2} \mathrm{O}\right.$ ] and the rate constants $k_{1}, k_{-1}, k_{2} 3$ marks
d) For bimolecular reactions with an activated complex, we can often assume that the forward step for formation of the activated complex is much slower than the backwards step $\left(k_{2} \ll k_{-1}\right)$. This means $k_{-1}+k_{2} \approx k_{-1}$. Simplify your final expression from part c based on this assumption. 1 mark

We can determine rate constants, like k2, with statistical mechanics and accurate descriptions of a molecule's energy levels. The following questions investigate the vibrational energy levels of HCl . The simple harmonic oscillator is a common approximation for the vibration of a diatomic molecule and follows Hooke's Law. The harmonic oscillator potential, $\mathrm{V}(\mathrm{I})$, is given below (l is the displacement of the $\mathrm{H}-\mathrm{Cl}$ bond from its equilibrium length, $\mathrm{I}_{0}$ ). The corresponding energy, $\mathrm{E}_{\mathrm{n}}$, for each of its vibrational energy levels, $n$, is also given.

$$
V(l)=\frac{k}{2}\left(l-l_{0}\right)^{2} \quad E_{n}=h \nu\left(n+\frac{1}{2}\right)
$$

The bond stretching frequency, $v$, is related to the force constant, $k$, and $h$ is Plank's constant. As the displacements, I, grow larger, the harmonic-oscillator potential begins to diverge from the true potential. A better approximation is given by the Morse potential:

$$
V(l)=D_{e}\left(1-\exp ^{\beta\left(l-l_{0}\right)}\right)^{2} \quad E_{n}=h \nu\left[\left(n+\frac{1}{2}\right)-\chi_{e}\left(n+\frac{1}{2}\right)^{2}\right]
$$

where $D_{e}$ is the dissociation energy of the molecule, $\beta$ is a measure of the curvature of $\mathrm{V}(\mathrm{I})$ around its minimum, and Xe is the anharmonic constant. An example of these potentials with energy levels, $n$, is shown in the figure below. The dotted lines correspond to a harmonic potential and the solid to a Morse potential. (Note that exp is equivalent to Euler's number, e)

e) The ground state energy, $n=0$, of a molecule is $E_{0}$. If the transition from $n=0->2$ for HCl has energy $\mathrm{E}_{2 \rightarrow>}=\mathrm{E}_{2}-\mathrm{E}_{0}=5668 \mathrm{~cm}^{-1}$, estimate the ground state energy of HCl using the harmonic approximation. 2 marks
f) If $\mathrm{E}_{3 \rightarrow>0}=8347 \mathrm{~cm}^{-1}$, what should be the ground state energy of HCl using the harmonic approximation? 1 mark
g) Your values from parts e and $f$ should be different due to anharmonicity. Use $E_{2->0}$ and $\mathrm{E}_{3 \rightarrow>}$ to estimate the anharmonic constant, Xe. 3 marks

