Manuel d’information sur la Concours nationale de croissance de cristaux

Le manuel comprend :

- des informations sur la compétition
- un guide de croissance de cristaux
Table des matières

Qu’est-ce que l’Institut de chimie du Canada? .. 4
Comment cette compétition se déroule-t-elle? .. 4
Calendrier de la compétition .. 4
Quels sont les prix? ... 4
Qui peut participer? ... 5
Contre qui vais-je compétitionner? ... 5
Comment s’inscrire à la compétition? .. 5
Contacts importants .. 6
Comment se procurer le produit? .. 6
Déroulement de la compétition .. 6
Comment sont jugés les cristaux? ... 7
 Critères d’évaluation .. 7

GUIDE DE CROISSANCE DE CRISTAUX .. 8
Qu’est-ce qu’un cristal? ... 8
Quelles substances utiliser? .. 8
Comment procéder? ... 8
 Ce que vous devez savoir ... 9
 Première étape: obtenir un cristal d’ensemencement .. 9
 Ce dont vous aurez besoin .. 9
 Ce que vous devez faire ... 10
 Deuxième étape : préparation d’une solution sursaturée ... 10
 Ce dont vous aurez besoin ... 10
 Première méthode .. 11
 Deuxième méthode ... 11
 Troisième méthode ... 11
Troisième étape: Croissance d’un gros monocristal ... 12
Ce dont vous aurez besoin .. 13
Ce que vous devez faire.. 13
Qu’est-ce que l’Institut de chimie du Canada?

L’Institut de chimie du Canada (ICC) est une association canadienne sans but lucratif de professionnels et professionnelles œuvrant dans le domaine de la chimie, du génie chimique et de la technologie chimique. L’ICC organise plusieurs activités de promotion de la chimie s’adressant aux étudiants et au grand public, dont la compétition de croissance de cristaux. Cette activité existe depuis plus de 30 ans!

Comment se déroule cette compétition?

La compétition consiste à faire pousser le plus beau et le plus gros cristal. Elle se déroule dans les écoles secondaires canadiennes, à l’automne. Les cristaux sélectionnés pour représenter l’école sont envoyés pour être jugés par un coordonnateur régional ou une coordinatrice régionale. Les cristaux gagnants de chaque région sont ensuite envoyés pour être jugés à l’échelon canadien.

Calendrier de la compétition

Vous trouverez ci-dessous le calendrier de la compétition pour 2019. En cas de retards inhabituels de la poste ou de livraison de la substance à cristalliser, veuillez aviser votre coordonnateur ou coordinatrice, qui modifiera l’échéancier dans la mesure du possible.

<table>
<thead>
<tr>
<th>Du 3 au 6 septembre</th>
<th>Envoi de l’annonce de la compétition aux écoles secondaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Du 3 septembre au 9 octobre</td>
<td>Période d’inscription à la compétition auprès des coordonnateurs régionaux</td>
</tr>
<tr>
<td>Du 11 septembre au 2 octobre</td>
<td>Commande (achat) de la substance chimique par les écoles</td>
</tr>
<tr>
<td>Du 9 octobre au 12 novembre</td>
<td>Période de croissance des cristaux</td>
</tr>
<tr>
<td>Du 13 au 15 novembre</td>
<td>Sélection des meilleurs cristaux par chaque école</td>
</tr>
<tr>
<td>Le 18 novembre</td>
<td>Date limite d’envoi des deux meilleurs cristaux de chaque école au coordonnateur régional ou à la coordinatrice régionale</td>
</tr>
<tr>
<td>Novembre et décembre</td>
<td>Évaluation régionale des cristaux et envoi des cristaux gagnants à la coordinatrice nationale</td>
</tr>
<tr>
<td>Début janvier</td>
<td>Évaluation à l’échelon national et transmission des résultats aux coordonnateurs régionaux</td>
</tr>
</tbody>
</table>

Quels sont les prix?

Les élèves ainsi que leurs enseignants ou enseignantes peuvent remporter des prix en argent pour leur école et recevront un certificat à leur nom s’ils remportent un prix national.

Les prix nationaux sont :

- Meilleur cristal (taille et perfection) – 1er prix (300 $), 2e prix (200 $), 3e prix (100 $)
- Cristal de la plus belle qualité (sans égard à la taille) – 1er prix (200 $)
- Meilleur cristal soumis par un enseignant, enseignante ou technicien, technicienne – 1er prix (200 $)
Qui peut participer?
Tous les élèves du secondaire ou d’une polyvalente au Canada (y compris ceux et celles qui sont scolarisés à la maison) âgés de 13 à 18 ans sont admissibles. Les élèves peuvent participer individuellement ou en équipe. Il n’y a aucune limite du nombre d’élèves ou d’équipes qui peuvent participer dans chaque école.

Un volet distinct de la compétition s’adresse aux enseignants, enseignantes et techniciens, techniciennes de laboratoire des écoles secondaires et des polyvalentes.

Contre qui vais-je compétitionner?
Les participants sont classés selon les quatre divisions suivantes:

- **Division 1.** Élèves d’une école secondaire ou d’une polyvalente située dans une région qui compte un coordonnateur régional ou une coordonnatrice régionale : Les cristaux sont envoyés à cette personne pour être jugés à l’échelon régional.

- **Division 2.** Élèves d’une école secondaire ou d’une polyvalente située en dehors d’une région qui compte un coordonnateur régional ou une coordonnatrice régionale : Les cristaux sont soumis à la coordonnatrice nationale, qui agira comme « juge régionale » pour cette division.

- **Division 3.** Élèves scolarisés à la maison : Les cristaux sont soumis à la coordonnatrice nationale, qui agira comme « juge régionale » pour cette division.

- **Division 4.** Enseignants, enseignantes, techniciens, techniciennes d’une école secondaire ou d’une polyvalente : Les cristaux sont jugés (taille et qualité) uniquement à l’échelon national. L’évaluation est effectuée indépendamment de celle des cristaux des élèves. Les cristaux sont soumis directement à la coordonnatrice nationale pour être jugés.

Les cristaux gagnants dans chaque région pour la division 1 ainsi que dans les divisions 2 et 3 sont ensuite réunis pour le jugement national final.

Comment s’inscrire à la compétition?
Veuillez communiquer avec votre coordonnateur régional ou votre coordonnatrice régionale pour vous inscrire. Si vous ne connaissez pas cette personne, communiquez avec Josée Brisson, coordonnatrice nationale à josee.brisson@chm.ulaval.ca. Cette étape est importante, car elle permet d’assurer un suivi de la réception des cristaux.

Les parents d’élèves scolarisés à la maison doivent les inscrire directement auprès de la coordonnatrice nationale, Josée Brisson, à josee.brisson@chm.ulaval.ca.

Si vous ne trouvez pas le coordonnateur ou la coordonnatrice pour votre région dans la liste en annexe, veuillez communiquer avec Josée Brisson, coordonnatrice nationale, à josee.brisson@chm.ulaval.ca.
Comment se procurer la substance chimique?

En 2019, le cristal sera fait de **sulfate de cuivre (II) pentahydraté (copper sulfate (II) 5-hydrate)**.

- Communiquez avec Boreal Science par téléphone au 1-800-387-9393, par télécopieur au 1-800-668-9106 ou par courriel à borealcs@vwr.com, entre le 11 septembre et le 1 octobre.
- Utilisez le code promotionnel NCGC2019 – Compétition de croissance de cristaux – produit n° 470300-856. La compagnie pourra expédier une bouteille de 500 g directement à votre école, au prix spécial de 17,25 $ (frais d’expédition en sus). Le paiement doit se faire par carte de crédit et l’adresse d’envoi doit être celle de votre école.
- Si vous avez besoin de plus de substance chimique, vous pourrez commander une seconde bouteille au même moment. Les quantités sont limitées par les stocks existants. Bien entendu, vous pouvez vous procurer une quantité supplémentaire de substance chimique auprès de vos propres fournisseurs.
- Les parents d’enfants scolarisés à la maison doivent s’identifier comme tels. Ils peuvent payer la substance chimique directement, mais la livraison devra cependant se faire à une école.

Déroulement de la compétition

La croissance des cristaux doit avoir lieu entre le 9 octobre et le 12 novembre et respecter deux grandes règles :

- **RÈGLE 1** : Les cristaux soumis doivent peser entre 0,5 et 100 g inclusivement. Ce poids correspond à l’utilisation d’une quantité maximale de la substance de départ de 100 g par élève ou par équipe.
- **RÈGLE 2** : Pour que tous les élèves aient le même temps de préparation, la croissance du cristal doit prendre fin cinq semaines après la réception de la substance de départ.

Dès que la période de croissance est terminée, les enseignants et enseignantes doivent sélectionner les deux cristaux qui représenteront l’école à l’échelon régional et les envoyer au coordonnateur régional ou à la coordonnatrice régionale. Ils doivent choisir :

1) le plus beau cristal sans égard à la taille (bien que la masse minimale doit atteindre 0,5 g)

le meilleur cristal, c’est-à-dire le plus gros cristal qui soit de belle qualité (cristal unique, bien formé, doté d’arêtes nettes et de faces unies, ayant une bonne clarté, etc.), sans pour autant que la masse ne dépasse 100 g. Chacun de ces deux cristaux doit être bien asséché et placé dans un sac de plastique (de type Ziploc) étiqueté au nom de l’élève qui l’a fait croître et de l’école.

Nous savons pertinemment que plusieurs cristaux peuvent avoir une qualité presque équivalente dans une même école, ce qui rend la tâche des enseignants et enseignantes difficile. Dans ces cas, il pourrait falloir soumettre plusieurs cristaux. Cependant, deux seuls par école pourront être considérés comme « officiels » pour l’attribution de prix.
Comment et quand sont jugés les cristaux?

Critères d’évaluation

Un des cristaux soumis sera jugé seulement pour sa qualité, selon les critères indiqués ci-dessous. L’autre cristal sera jugé en fonction de sa masse et de sa qualité, comme il est expliqué ci-dessous.

Des experts évalueront les cristaux suivant une échelle de 1 à 10, la note de 10 étant attribuée à un cristal de qualité parfaite qui respecte la forme cristalline de la substance utilisée.

Tous les cristaux seront pesés et leur masse M_o sera notée. **Les cristaux doivent peser entre 0,5 et 100 g.**

Les facteurs suivants seront pris en compte pour déterminer la **qualité des cristaux** :

- a) bon ou mauvais type de cristal (sur 2 points)
- b) présence ou absence d’inclusions (sur 2 points)
- c) arêtes nettes et bien définies, continues ou arrondies, brisées (sur 2 points)
- d) faces lisses ou irrégulières (sur 2 points)
- e) clarté ou opacité (sur 2 points)

Qualité totale $Q_o = (a + b + c + d + e)$ sur 10 points

La **note totale** sera ensuite calculée comme suit :

$$\text{Note totale} = \log (Mo+1) \times Q_o$$

Le logarithme de la masse est utilisé pour qu’un gros cristal de faible qualité ne pénalise pas indûment les petits cristaux de belle qualité.

Une unité est additionnée à la masse pour empêcher qu’un cristal de moins de 1 g obtienne une valeur négative.

Un cristal obtenu avec un rendement parfait à partir de 100 g d’une substance (M_{MAX}) et ayant une qualité parfaite de 10 (Q_{MAX}) obtiendrait une note maximale de

$$[\log (100+1)] \times 10 = 20,01$$

Le pointage attribué à un cristal est exprimé en pourcentage de cette valeur maximale. Le cristal avec le résultat le plus élevé est déclaré gagnant.

$$100 \times \frac{[\log (Mo+1)] \times Q_o}{[\log (M_{\text{MAX}}+1)] \times Q_{\text{MAX}}} = \text{Score global} \%$$

Le cristal parfait de 100 g se verrait alors attribuer la note de 100 %.

Exemple de calcul : Le meilleur cristal de la compétition de 2001, fabriqué à partir de 150 g de substance de départ ($M_{\text{MAX}} = 150$ g), avait une masse finale de 46,53 g et la note obtenue pour la qualité était de 8,65/10. La note globale obtenue était donc de :

$$100 \times \frac{[\log (46,53+1)] \times 8,65}{[\log (150+1)] \times 10} = 66,6 \%$$
Guide de croissance de cristaux

Qu’est-ce qu’un cristal?

Un cristal est un solide constitué d’atomes, d’ions ou de molécules placés selon un patron régulier et répétitif. Ainsi, la substance a une forme et une couleur spécifiques, de même que d’autres propriétés caractéristiques. Le diamant (utilisé en joaillerie et pour les outils de coupe) en est un exemple; il est constitué d’atomes de carbone pur. Le graphite (utilisé dans les crayons et les lubrifiants) est aussi un cristal composé d’atomes de carbone. Le sel et le sucre sont d’autres substances pouvant former des cristaux.

Le procédé de recristallisation est utilisé pour purifier un cristal en dissolvant le solide (appelé soluté) dans un liquide approprié (appelé solvant) pour le récupérer de nouveau sous forme cristalline. Selon les conditions, un amas de plusieurs petits cristaux ou un seul gros cristal se formera. Pour plus d’informations, consultez les sites suivants :

https://www.otago.ac.nz/chemistry/outreach/crystals/growing/index.html
https://uwaterloo.ca/earth-sciences-museum/resources/crystal-shapes
https://www.youtube.com/watch?v=gsC039jpOT0
http://www.ccp14.ac.uk/ccp/web-mirrors/paulboyle/student_xtal.html

Quelles substances utiliser?

Plusieurs substances peuvent se cristalliser. À la maison, le sel de table (chlorure de sodium) sert souvent à faire croître des cristaux. Pour la Compétition nationale de croissance de cristaux, la substance chimique à employer change chaque année. Jusqu’à maintenant, trois substances différentes ont été utilisées :

- sulfate de cuivre (II) pentahydraté (ou « pierre bleue »)
- sulfate d’aluminium et de potassium (ou alun); cette substance semble être populaire pour mener des expériences
- tartrate de sodium et de potassium (aussi appelé sel de Rochelle).

Ces substances ont été choisies pour des raisons de sécurité relative, d’accessibilité et de bonne capacité de cristallisation. Les deux premières sont en vente chez la plupart des fournisseurs de produits chimiques de laboratoire. La troisième peut s’acheter en épicerie, mais attention de choisir de la vraie crème de tartre.

D’autres substances sont aussi connues pour donner de bons cristaux, entre autres :

- le ferricyanure de potassium
- l’acétate de cuivre monohydraté
- l’acétate de calcium et de cuivre hexahydraté.
Comment procéder?
Pour obtenir un gros cristal, trois étapes principales sont généralement nécessaires :

1) l’obtention d’un petit cristal d’ensemencement
2) la préparation d’une solution sursaturée
3) la suspension du cristal d’ensemencement dans une solution sursaturée pour le faire croître (explications à venir).

Il est assez facile d’obtenir de beaux petits cristaux. Par contre, l’obtention d’un gros cristal presque parfait relève de l’art et d’une attention constante à divers détails. La suite du guide explique les rudiments de cet art.

Ce que vous devez connaître

- Il faut connaître la solubilité de la substance dans l’eau à la température de la pièce. Cette information se trouvera dans un ouvrage de référence de chimie.
- Il serait aussi utile de connaître la solubilité de la substance à des températures légèrement élevées. Cette information peut aussi se trouver dans un ouvrage de référence comme le *Handbook of Chemistry and Physics*, à la section *Aqueous Solubility of Inorganic Compounds in Mass % as a Function of Temperature*.

Première étape: obtenir un cristal d’ensemencement

Le but de la compétition est d’obtenir un « monocristal », ou cristal unique, et non un agglomérat de petits cristaux imbriqués les uns dans les autres, même s’ils peuvent être jolis. Pour y arriver, il faut obtenir en premier un petit cristal, le plus parfait possible, qui servira de cristal d’ensemencement. Il faut ensuite faire croître ce cristal lentement, une croissance rapide risquant plus d’engendrer la formation de cristaux multiples que d’un monocristal.

Ce dont vous aurez besoin

- Substance à cristallisérer
- Eau distillée ou déminéralisée
- Contenant large et peu profond (telle une boîte de Pétri)
- Plaque chauffante ou élément électrique
- Bécher ou autre petit contenant de 100 à 250 ml
- Fil ou ligne à pêche (résistance de 1 à 2 kg)
- Bâtonnet de bois (bâton de « Popsicle » par exemple)
- Loupe (optionnel)
Ce que vous devez faire

- Chauffez environ 50 ml (¼ de tasse) d’eau dans un contenant en verre (bécher).
- Faites dissoudre une quantité suffisante de la substance pour obtenir une solution saturée à température élevée.
- Transvidez la solution dans un contenant large et peu profond.
- Laissez tempérer la solution.
- Après environ une journée, des petits cristaux devraient se former.
- Récoltez quelques cristaux (les plus beaux).
- À l’aide d’une loupe, sélectionnez un petit cristal transparent de forme régulière qui vous servira de cristal d’ensemencement.
- Attachez ce cristal d’ensemencement avec le fil à pêche à l’aide d’un simple nœud. Assurez-vous que le fil est assez long (environ la moitié de la hauteur du bécher qui sera utilisé à la troisième étape).
- Suspenez ce cristal d’ensemencement à 1 ou 2 mm de profondeur dans un faible volume de solution saturée (1 à 2 ml) versée dans un couvercle ou une boîte de Pétri (durée : un ou deux jours).
- Vérifiez avec une loupe que le cristal est bien tenu par la ligne à pêche et qu’il croît autour de celle-ci. Cette étape est très importante : plusieurs jours de croissance peuvent être gaspillés si la croissance n’est pas régulière au départ ou ne suit pas la forme du cristal de départ. Il vaut mieux bien vérifier avant de passer à l’étape suivante.

Deuxième étape : préparation d’une solution sursaturée

Pour faire croître un gros cristal, vous devez le suspendre dans une solution sursaturée. Cette solution ne sera pas à l’état d’équilibre; en fait, la concentration du soluté (substance à cristalliser) sera supérieure à la normale. Pour y arriver, il faut d’abord préparer une solution saturée, qui sera à l’équilibre et qui contiendra la quantité maximale de la substance qui peut se dissoudre dans l’eau. Ensuite, il faudra changer les conditions pour que la concentration de la solution dépasse celle de l’état d’équilibre, ce qui forcera la cristallisation du soluté. Pour que cela se produise, il faudra cependant du temps et, durant tout ce temps, la solution devra être sursaturée!

Plusieurs méthodes existent pour obtenir une solution sursaturée. Trois de ces méthodes figurent ci-dessous.

Note : La quantité de substance et d’eau à utiliser dépendent de la solubilité de cette substance dans l’eau à la température de la pièce et à une température légèrement supérieure. Les données de solubilité dans les ouvrages de référence peuvent vous guider, mais vous aurez probablement à procéder par quelques essais et erreurs pour trouver les bonnes proportions, comme tous les scientifiques le font au début d’une nouvelle expérience.

Ce dont vous aurez besoin

- Substance à cristalliser
- Eau distillée ou déminéralisée
- Thermomètre
- Balance
- Contenant de plastique ou de verre (0,5 à 1 L)
- Plaque chauffante ou élément électrique
Première méthode
- Dans un contenant en verre, versez un certain volume d’eau tempérée. Ajoutez environ le double de la quantité de substance qui s’y dissoudrait normalement (c’est-à-dire le double de la solubilité). Par exemple, si 30 g d’une substance se dissolvent dans 100 ml d’eau tempérée, mettez 60 g de cette substance dans 100 ml d’eau. Ajustez les proportions selon la quantité de substance dont vous disposez. Assurez-vous d’utiliser un contenant propre.
- Agitez le mélange jusqu’à ce qu’il n’y ait plus de mise en solution possible.
- Continuez à agiter doucement la solution en la chauffant légèrement.
- Une fois que toute la substance est dissoute, retirez le contenant de la source de chaleur.
- Laissez la solution revenir à la température de la pièce.
Vous avez maintenant une solution sursaturée.

Note : Cette méthode ainsi que la suivante ne fonctionnent que si la solubilité du soluté est supérieure dans un solvant à chaud qu’à froid. C’est généralement le cas, à quelques exceptions près. Par exemple, la solubilité du sel de table (chlorure de sodium) ne varie presque pas avec la température. Certaines substances sont même plus solubles à froid qu’à chaud.

Deuxième méthode
- Choisissez un volume d’eau approprié.
- Chauffez cette eau à environ 15 ou 20°C au-dessus de la température de la pièce.
- Ajoutez une certaine quantité de votre substance à l’eau chauffée et agitez la solution jusqu’à dissolution complète.
- Continuez à ajouter une certaine quantité de substance et à agiter jusqu’à ce qu’il n’y ait plus de mise en solution possible.
- Continuez à chauffer un peu jusqu’à ce que le reste de la substance ajoutée au mélange se dissolve complètement. La solution doit être entièrement limpide et aucunement trouble.
- Lorsque la dissolution est complète, retirez le contenant de la source de chaleur.
- Laissez la solution revenir à la température de la pièce.
Vous avez maintenant une solution sursaturée.

Troisième méthode
- Préparez une solution saturée en utilisant les valeurs de solubilité (masse de la substance/volume d’eau) tirées d’un ouvrage de chimie.
- Laissez l’eau s’évaporer un certain temps (cela prend parfois plusieurs heures, voire quelques jours, selon la saturation initiale de la solution).
Troisième étape: Croissance d’un gros cristal

Vous avez maintenant tout ce qu’il faut pour faire croître un gros cristal. Pour y parvenir, suspendez votre cristal d’ensemencement dans la solution sursaturée préparée à la deuxième étape. Cette solution contient plus que la quantité normalement maximale (donc plus que la solubilité) de votre substance en solution. Elle n’est pas à l’équilibre et la substance va vouloir « sortir » de la solution. Elle va se cristalliser sur tout ce qu’elle pourra, que ce soit le cristal d’ensemencement (c’est le résultat espéré) ou encore des poussières ou des impuretés (ce que vous voulez éviter parce que la croissance sera mal contrôlée et donnera des formes de cristaux souvent irrégulières).

Par ailleurs, la vitesse à laquelle la cristallisation se produira influencera grandement la qualité du cristal obtenu. Plus la solution est sursaturée (plus il y a un excès de la substance en solution par rapport à la valeur maximale d’équilibre), plus la croissance sera rapide. Par contre, les cristaux de meilleure qualité s’obtiennent toujours par une croissance lente.

Un avertissement s’impose : Puisque la solubilité d’une substance varie selon la température, il est très important de bien régler celle-ci. De plus, pour permettre la croissance de votre cristal, il est absolument nécessaire que votre solution soit toujours saturée à la température choisie pour la croissance (souvent la température de la pièce), sinon le cristal peut se dissoudre partiellement ou entièrement.

Malheureusement, plusieurs écoles ont eu la mauvaise surprise d’admirer un magnifique cristal en croissance le vendredi et de revenir le lundi suivant pour trouver un fil à pêche désespérément vide. Pourquoi? Une augmentation de température durant la fin de semaine a causé la dissolution complète du cristal. Ce phénomène se produit souvent vers le mois d’octobre, lorsque les écoles démarrent leur système de chauffage. Il est donc recommandé, si vous avez la possibilité, de placer votre solution dans un bain thermostaté à une température de quelques degrés supérieurs à la température de la pièce. Sinon, placez votre solution dans une glacière, ce qui limitera les variations de température et pourrait sauver la « vie » de votre cristal.
Ce dont vous aurez besoin

- Substance à cristalliser
- Un cristal d’ensemencement de la substance à cristalliser, attaché à une ligne à pêche
- Un bâtonnet de bois (bâton de « Popsicle »)
- Eau distillée ou déminéralisée
- Thermomètre
- Balance
- Plaque chauffante ou autre dispositif de chauffage
- Bécher de 2 à 4 litres
- Glacière en styromousse ou autre (optionnel)
- Loupe ou microscope (optionnel)
- Bain thermostat (optionnel)
- Moteur à révolution très lente (1 à 4 tours/jour) (optionnel)

Ce que vous devez faire

1. Prenez le fil à pêche sur lequel le cristal est attaché et fixez-le à un bâtonnet de bois (bâton de Popsicle) de telle sorte que le cristal sera immergé au milieu de la solution saturée lorsque vous le placerez dans son contenant de croissance.
2. Insérez et suspendez délicatement votre cristal d’ensemencement dans la solution sursaturée, en prenant bien soin de ne pas toucher le fond ou les côtés du contenant.
3. Couvrez le contenant de croissance pour :
 - éliminer les poussières
 - réduire les fluctuations de température.

Vous pouvez utiliser une pellicule plastique ou du papier d’aluminium. Si vous voulez que le solvant (généralement de l’eau) s’évapore (voir le point 4 ci-dessous), utilisez une feuille de papier poreux (papier-filtre, filtre à café).

4. Observez la croissance de votre cristal. Selon la nature de votre substance, le degré de sursaturation et la température, plusieurs jours peuvent s’écouler avant que la croissance ralentisse et s’arrête vraiment.

 - POURQUOI LA CROISSANCE DU CRISTAL S’ARRÊTE-T-ELLE?
 Un cristal croîtra seulement si la solution dans laquelle il baigne est sursaturée. Quand la solution devient seulement saturée, la croissance du cristal ne peut plus continuer (en fait, une petite quantité à la surface va se dissoudre pendant qu’une même quantité va se cristalliser à un autre endroit, ce qui s’appelle une situation d’équilibre).

 - POURQUOI MON CRISTAL A-T-IL RAPETISSÉ OU DISPARU?
 Si votre cristal a diminué ou disparu, c’est parce que la solution qui l’entoure est devenue non saturée et le cristal s’est dissous dans celle-ci. La non-saturation peut se produire lorsque la température d’une solution augmente, même de seulement quelques degrés, selon les conditions. Voilà pourquoi la régulation de la température est si importante.

 - COMMENT RELANCER LA CROISSANCE DE MON CRISTAL?
 Il faut rendre la solution à nouveau sursaturée. L’étape 5 explique comment faire.

5. Lorsque nécessaire, sursaturez à nouveau votre solution. Vous pourriez devoir le faire tous les jours, surtout quand le cristal commence à être gros. Commencez par retirer le cristal de la solution.
Une façon de sursaturer à nouveau la solution consiste à diminuer la quantité de solvant. Il faut chauffer alors la solution pendant un certain temps, puis la laisser revenir à la température initiale (de la pièce). Vous pouvez aussi laisser s’évaporer lentement le solvant (processus plus long, mais qui permet souvent d’obtenir un cristal de meilleure qualité). Vous pouvez aussi sursaturer la solution en la chauffant un peu, puis en ajoutant et en dissolvant d’autre soluté avant de laisser tempérer.

Chaque fois que la solution est sursaturée à nouveau, il convient de « nettoyer » la surface du cristal :

- en s’assurant que le cristal est sec
- en ne touchant pas le cristal avec ses doigts (manipulez-le avec le fil)
- en enlevant toutes les irrégularités des surfaces (souvent des excroissances)
- en enlevant tous les autres petits cristaux qui ont pu se former sur le fil.

6. Suspandez de nouveau le cristal dans la solution nouvellement sursaturée.

7. Répétez les étapes 5 et 6 au besoin.

8. Pour vous assurer d’une bonne symétrie et pour favoriser une croissance égale, surtout si le cristal devient très gros, vous obtiendrez de meilleurs résultats si vous tournez très lentement votre monocristal en croissance (1 à 4 rotations par jour) quand il baigne dans la solution sursaturée. Un moteur électrique tournant de 1 à 4 rotations par jour peut être difficile à trouver (nous suggérons un ancien moteur d’enregistreur sur cylindre d’humidité/température).

9. Retirez votre cristal une fois la période de croissance terminée, et essuyez-le bien avec un papier absorbant, en évitant de le toucher avec vos doigts! Une fois que le cristal est bien sec, déposez-le dans un petit sac de plastique hermétique (un sac de type Ziploc par exemple) que vous fermez et sur lequel vous collerez une étiquette avec votre nom et celui de votre école. Remettez le tout au responsable de l’activité à l’école, qui choisira les deux meilleurs cristaux et les enverra à l’échelon régional. Avant d’envoyer les cristaux, il est important de vérifier si leur masse se situe dans les limites de la compétition, soit entre 0,5 et 100 g, à défaut de quoi le cristal sera automatiquement disqualifié.

Le ou la responsable de l’activité est invité à se reporter aux sections « Déroulement de la compétition » et « Critères d’evaluation » pour tout savoir sur la façon d’évaluer les cristaux et sur la façon et le moment de les envoyer au coordonnateur régional ou à la coordonnatrice régionale

10. Finalement, il est essentiel de toujours bien se laver les mains au savon et à l’eau après avoir manipulé tout produit chimique.

Pour des instructions professionnelles sur la croissance de cristaux, reportez-vous à l’article de Paul Boyle « Growing crystals that will make your crystallographer happy », affiché sur le Web.

Une fois que vous maîtriserez la croissance des cristaux, vous souhaiterez peut-être en faire croître en présence de « contaminants » volontaires qui donneront des couleurs ou des formes différentes aux cristaux. Ceux-ci ne seront cependant pas admissibles à la compétition.