Basing Loss Prevention Recommendations on Risk

K. Gerry Phillips
Sr. Loss Prevention
Engineer

Introduction

- Recommendations arise from
 - » Underwriters
 - » Audit Teams
 - » Management
- Fail to consider the Risk
- NOVA Risk Management uses
 Quantitative Risk Analysis to evaluate

Single Facility or Scenario

- Recommendation aimed at single event
 - » Pool fire
 - » Jet Fire
 - » Explosion
- Can reduce frequency, probability, or consequences
- Calculate difference in expected loss

Example 1 - Single Area

- Fireproofing costing \$15,000
- Release frequency = 1 in 500 years
- Ignition probability = 1 in 5
- Damage for existing situation
 - » 95% PD=\$90k; BI=90 days @ \$10k/day
 - » 5% PD=\$25M; BL=16 mo @ \$10k/day
- Probable loss = \$2,430,500

Example 1 - continued

- Expected annual loss = \$972.20/year or about \$1000 per year +
- Losses with fireproofing = negligible
- Probable savings = \$1000 per year
- Probable return on investment = \$1000 per year/\$15,000 = .067/yr or 6.7% per year.

Probable ROI for a Facility

- Recommendation affects total facility
- Expected losses must be calculated for each area for existing situation
- Calculation repeated with modification --
- Expected savings are calculated
- Probable return on investment is calculated

Example 2 - Facility Study

- Recommended a third fire water supply pump
- Installed cost = \$200,000
- Reliability of existing pumps is .9
 i.e. 1 failure per 10 demands
- Four units within the facility
- Liquid pool fires are the concern

Existing Situation Data

			2 Pps 1 Pump Fails 2 Pumps Fail					
1000			Operate		to Operate Prob. = 0.19		to Operate Prob. = 0.01	
-	Event	Data	Prob. =	0.80	Prob.	<u> - U. 19</u>	Prob.	= 0.01
Area	Freq	lgn	PD (\$)	BI (\$)	PD (\$)	BI (\$)	PD (\$)	BI (\$)
Feed Prep	.05/yr	0.1	100k	100k	300k	500k	2M	10M
Reaction	.10/yr	0.05	500k	700k	900k	1000	4M	20M
Distillation	.10/yr	0.2	100k	100k	200k	300k	1M	20M
Prod Storage	.05/yr	0.05	50K	100k	100K	300k	.5M	20M

Probable Loss - Existing

		100				
400	Expe	cted Loss o	due to Fire (l	(\$)		
	2 Pumps	Pump	No Pumps	Total	Freq	Probable
Area	Operate	Operates	Operate	Loss (\$)	(fires/yr)	Loss (\$/yr)
Feed Prep	160	152	120	432k	0.005-	2,160
Reaction	960	361	240	1561k	0.005	7,805
Distillation	160	95	210	465k	0.02	9,300
Prod Storage	120	76	2 05	401k	0.0025	1,002
Total						20,267

Data for Modification

			to Operate to		to Op			
-	Event	Data			Prob. =			0.001
Area	Freq	lgn	PD (\$)	BI (\$)	PD (\$)	BI (\$)	PD (\$)	BI (\$)
Feed Prep	.05/yr	0.1	100k	100k	300k	500k	2M	10M
Reaction	.10/yr	0.05	500k	700k	900k	1000	4M	20M
Distillation	.10/y ∟	0.2	100k	100k	200k	300k	1M	20M
Prod Storage	.05/yr	0.05	50K	100k	100K	300k	.5M	20M

Probable Loss - Modified

Vi.	Exp	pected Loss	Loss due to Fire (k\$)						
Area	2 Pumps Operate	1 Pump Operates	No Pumps Operate	Total Loss (k\$)	Freq. (fires/yr)	Probable Loss (\$/yr)			
Feed Prep	194	2 3.2	12	229.2	0.005	1,146			
Reaction	1164	55.1	24	1243.1	0.005	6,216			
Distillation	194	14.5	21	229.5	0.02	4,590			
Prod Storage	145.5	11.6	20.5	177.6	0.0025	444			
Total						12,396			

Probable Return on Investment

- Probable annual loss existing =\$20,267/yr
- Probable annual loss modified = \$12,396/yr
- Potential savings = \$7,871/yr or approximately \$8,000/yr
- Probable ROI = .04/yr or 4%/yr

Case Study - Nova Chemicals

- Recommended that Nova
 - » add a second diesel-driven pump
 - » install a supply from the county .
- Installed cost of \$600,000
- Analysis addressed loss due to fire
- Considered 19 separate systems
- Used plant personnel for data

Case Study - Results

- The existing case represented an average loss of \$148k/yr
- The modified case produced an average loss of \$114k/yr
- Potential savings of \$34k/yr
- Probable rate of return of 6%
- The modifications could not be justified

Case Study - Other Concerns

- Potential failure of the water supply storage tank
- Major source of loss was from the compressor area due to poor drainage...
- The deluge at the hexene storage bullet was designed for butene.

Case Study - Recommendations

- Do not install a second diesel-driven firewater pump.
- Install a larger supply from the MOEE
- Provide a by-pass around the water supply tank.
- Install drainage and holding facilities for lube oil spills in the compressor area.

Case Study - Recommendations

- Provide foam protection for the hexene storage area.
- Inspect the bottom of the firewater supply tank at the earliest opportunity.

Follow-up to the Study

- Expected frequency of complete electrical failure was 1 in 50 years when the original study was completed.
- Recent events have resulted in three complete power failures in 3 years.
- Expected losses will be significantly higher given the higher failure rate.
- What will be the result when the calculations are repeated?