Introduction to Pipeline Quantitative Risk Assessment

66th Canadian Chemical Engineering Conference
October 18th, 2016

Presented by
Sam Sanati, P.Eng, FS Eng.
Pipeline Incident, 2008 (V.A, U.S.A)

The 30” (53 yrs old) natural gas pipeline ruptured and ignited explosion destroyed everything with 560 ft of the rupture.

Cause of rupture: Internal and External corrosion

Damage: $5,416,000
Evacuations: 50 people evacuated
History of Pipeline

- 500 BC: First Hydrocarbon Pipeline (China)
- 1853: 25 km Natural Gas (Quebec)
- 1862: Oil (Ontario)
Pipeline Incidents in Canada

Reference: Transportation Safety Board of Canada
Canadian Pipeline Regulations

• AER Manual 005:
 Industry is responsible for understanding and complying with all pipeline-related regulatory requirements, including the development of safety loss management systems, effective integrity management programs, and suitable risk assessment / risk mitigation strategies.

• Canadian Energy Pipeline Association (CEPA):
 If a consequence is determined to be significant, Operating Companies should assess the risks associated with the hazards.

• BC Oil & Gas Commission
 If the applicant intends to design and site the LNG facility in accordance with a Quantitative Risk Assessment (QRA) as opposed to using the standard identified in the Regulation the applicant must submit the results of a preliminary QRA to the Commission as part of the LNG Facility Permit Application.
Why Quantitative Risk Assessment?

- Clear and defendable
- Not subjective and decision is based on mathematical risk evaluation.
- Accurate level of risk for land uses around pipeline.

Caution:
Misapplication or incomplete QRA
Pipeline QRA Methodology

Failure Mode Analysis
- Pipeline Design Parameters
- Hazard & Scenario Identification

Consequences Analysis
- Release rate and Dispersion
- Types of Fire
- Ignition
- Thermal radiation effects

Frequency Analysis
- Failure Mechanism
- Leaks vs. Rupture
- Event Tree Analysis

Risk Assessment
- Individual Risk
- Societal Risk

Risk Reduction

30 January 2017
Pipeline Failure Modes

<table>
<thead>
<tr>
<th>Failure Mode</th>
<th>Analysis</th>
<th>Consequences Analysis</th>
<th>Frequency Analysis</th>
<th>Risk Assessment</th>
<th>Risk Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Interference</td>
<td>Failure Mode Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External / Internal / Corrosion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material & Construction Defect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground Movement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geotechnical / Hydrological Forces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incorrect Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alberta Pipelines Incident Causes

Crude Oil
- Weld: 19 (3.3%)
- Construction damage: 24 (4.5%)
- Overpressure: 8 (1.5%)
- Joint: 11 (2.0%)
- Earth movement: 15 (2.5%)
- Internal corrosion: 114 (21.2%)
- Valve/fitting: 80 (11.2%)
- Other: 84 (15.0%)
- Damage by others: 168 (31.7%)

Natural Gas
- Weld: 178 (3.2%)
- Construction damage: 170 (3.2%)
- Overpressure: 26 (4.8%)
- Joint: 9 (1.6%)
- Pipe: 99 (18.4%)
- Valve/fitting: 44 (8.3%)
- Other: 81 (15.6%)
- Damage by others: 834 (15.2%)
- Internal corrosion: 2,919 (52.2%)
- External corrosion: 640 (11.7%)

Sour Gas
- Weld: 7 (1.3%)
- Construction damage: 13 (2.4%)
- Overpressure: 5 (0.9%)
- Joint: 5 (0.9%)
- Earth movement: 6 (1.1%)
- Internal corrosion: 203 (49.6%)
- External corrosion: 42 (7.5%)
- Damage by others: 51 (9.8%)

Consequences Analysis

- Toxic Release
 - Toxic Dispersion
 - Fire
 - VCE
 - (Negligible Risk)

- Flammable Release
 - Release Rate
 - Ignition Probability
 - Dispersion
 - Release Rate
 - Ignition Probability

Risk Assessment

Failure Mode Analysis

Frequency Analysis

Risk Reduction
Leak & Rupture

• Leaks / Punctures
 – Alberta Pipeline Act defines a leak as ‘the escape of substance from a pipeline in a manner that does not immediately impair the operation of the pipeline’.

• Rupture / Line Break
 – a guillotine rupture.
 – an axial or nearly axial split
UKOPA Definition of Leak Sizes

UKOPA:

- Pin hole: equivalent hole diameter up to 6 mm;
- Small hole: hole diameter between 6 mm and 40 mm;
- Large hole: hole diameter greater than 40 mm but less than pipe diameter;
- Rupture: hole diameter equal to or greater than pipe diameter.
External Interference Failure Mode

- Example of critical defect lengths for UKOPA pipeline cases with 0.72 design factor

<table>
<thead>
<tr>
<th>Diameter (mm)</th>
<th>Wall thickness (mm)</th>
<th>Material grade</th>
<th>Critical defect length (mm)</th>
<th>Critical hole diameter limit rupture/leak (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>168.3</td>
<td>5.6</td>
<td>X42</td>
<td>28.97</td>
<td>2.41</td>
</tr>
<tr>
<td>219.1</td>
<td>5.6</td>
<td>X46</td>
<td>31.72</td>
<td>2.98</td>
</tr>
<tr>
<td>406.4</td>
<td>7.9</td>
<td>X52</td>
<td>47.92</td>
<td>5.09</td>
</tr>
<tr>
<td>914</td>
<td>9.5</td>
<td>X65</td>
<td>85.91</td>
<td>12.73</td>
</tr>
</tbody>
</table>
Buried Pipelines

• Modeling diffusion through the soil
• Crater Formation
 – Crater depth is a function of Pipe size and pressure, depth of soil, type of soil & moisture
 – Potential damage of adjacent line
 – Potential of escalation
 – Continuing fluid flow in the adjacent pipeline reduces the chance of damage
 – Radiative flame heating impact diminishes rapidly as distance increases
Frequency Databases

<table>
<thead>
<tr>
<th>Database</th>
<th>Region</th>
<th>Fuel Type</th>
<th>Number of Incident</th>
<th>Frequency 10⁻³ per km.yr</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGIG</td>
<td>Europe</td>
<td>Gas</td>
<td>106 (2006 ~ 2010)</td>
<td>0.162</td>
<td>Since 1970</td>
</tr>
<tr>
<td>CONCAWE</td>
<td>Europe</td>
<td>Oil</td>
<td>379</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>DOT (PHMSA)</td>
<td>US</td>
<td>Gas & Oil</td>
<td>466 (2006 ~ 2010)</td>
<td>0.195</td>
<td>• Used for studies in N.A.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Large database</td>
</tr>
<tr>
<td>APIA</td>
<td>Australia</td>
<td>Gas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEB</td>
<td>Canada</td>
<td>Gas & Oil</td>
<td>21 (2005 ~ 2009)</td>
<td>0.351</td>
<td>• Used for studies in Canada</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Limited database</td>
</tr>
<tr>
<td>World Bank</td>
<td>Russia & FSU</td>
<td>Oil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKOPA</td>
<td>UK</td>
<td>Gas</td>
<td>10 (2006 ~ 2010)</td>
<td>0.093</td>
<td></td>
</tr>
<tr>
<td>EUB (AER)</td>
<td>Alberta</td>
<td>Gas & Oil (Incl. Sour)</td>
<td>< 5 (NG)</td>
<td>0.8 (NG) \ 1.0 (Crude Oil)</td>
<td>• Used for studies in Canada</td>
</tr>
</tbody>
</table>
Aging & Frequencies

Built before 1953

Built after 1960

Reference: EGIG Report
Gas Pipeline Event Tree Analysis

Rupture
- Immediate Ignition (Y)
 - Fireball + Jet Fire
- Delayed Local Ignition (Y)
 - Jet Fire
- Delayed Remote Ignition (N)
 - Flash Fire + Jet Fire
 - No ignition
 - Toxic Dispersion (if applicable) (N)

Pipe Failure
- Immediate Ignition (Y)
 - Jet Fire
- Delayed Local Ignition (Y)
 - No ignition
 - Toxic Dispersion (if applicable) (N)

Puncture
- Immediate Ignition (Y)
 - Jet Fire
- Delayed Remote Ignition (N)
 - No ignition
 - Toxic Dispersion (if applicable) (N)

30 January 2017
Risk Assessment

Failure Mode Analysis
Consequences Analysis
Frequency Analysis
Risk Assessment
Risk Reduction

Tolerable if ALARP
Broadly acceptable

Risk Assessment

1E-3/year
1E-4/year
1E-6/year
1E-6/year

High / Unacceptable
Medium / Tolerable only if risk is reduced to ALARP
Low / Broadly Acceptable
Location Specific Individual Risk

Distance from Pipeline (m)

LSIR

Total
JF - Jet Fire
FB - Fireball
Flash Fires

1.0E-05
5.1E-06
1.0E-07

-3000 -2000 -1000 0 1000 2000 3000

30 January 2017
Risk Mitigation

• Wall Thickness
• Regular Surveillance
• Depth Cover
• Design Factor
• Protection Measures (e.g. concrete slab)
• Proof Testing of SIL rated Emergency Instruments
Valves’ Closing Time and Location
Thank you

If you’d like to find out more contact:
Sam.Sanati@atkinsglobal.com
Or Visit:

www.atkinsglobal.com

© Atkins Limited except where stated otherwise.

30 January 2017